@Cognatech_docs
Learn GitLab -

Signup gitlab with respective github account :- [image: A screenshot of a login page

Description automatically generated]
Step 1: Visit GitLab Website
1. Open your web browser and navigate to the GitLab website: https://gitlab.com/
Step 2: Registration
2. Click on the "Sign Up" or "Register" button, usually located in the upper right corner of the page.
3. Fill in the required information, including:
· Username: Choose a unique username.
· Email: Provide a valid email address.
· Password: Create a strong password.
4. Solve any CAPTCHA or security checks if prompted.
5. Review and agree to the terms of service and privacy policy.
6. Click on the "Register" or "Create account" button.
Step 3: Email Verification
7. Check your email inbox for a verification email from GitLab.
8. Open the email and click on the verification link provided.
Step 4: Account Verification
9. You may be prompted to complete additional steps for account verification, depending on GitLab's security measures.
Step 5: Account Setup
10. After verification, return to the GitLab website and log in with your newly created credentials.
11. Follow any on-screen prompts to set up your profile, including adding a profile picture and other optional information.

Set up GitLab :-

1. SSH Key Setup (Optional):
Purpose:
· Securely authenticate with GitLab using SSH keys.
· Convenient and secure way to connect to repositories without entering passwords.
Steps:
1. Generate SSH Key:
· Open a terminal on your local machine.
· Use the following command to generate an SSH key: ssh-keygen -t rsa -C "your_email@example.com"
· Follow the on-screen prompts.
2. Add SSH Key to GitLab:
· Copy the SSH key to your clipboard: cat ~/.ssh/id_rsa.pub (replace with your actual key file)
· In GitLab, go to "Settings" > "SSH Keys."
· Paste your SSH key into the "Key" field and click "Add Key."
3. Test the SSH Connection:
· In the terminal, run: ssh -T git@gitlab.com
· You should receive a message indicating a successful connection.
2. Two-Factor Authentication (2FA):
Purpose:
· Adds an extra layer of security to your GitLab account.
· Requires a second verification step in addition to your password.
Steps:
1. In GitLab, go to "Settings" > "Account" > "Two-Factor Authentication."
2. Follow the on-screen instructions to enable 2FA.
· You can use a mobile app (e.g., Google Authenticator) or recovery codes.
3. Save recovery codes in a secure place. These codes can be used to access your account if you lose access to your 2FA device.
3. Account Security Settings:
Purpose:
· Additional security measures to protect your GitLab account.
Steps:
1. In GitLab, go to "Settings" > "Account."
2. Consider the following security options:
· Password: Regularly update your password to a strong and unique one.
· Account Lockout: Enable account lockout after a certain number of failed login attempts.
· Session Limit: Set a session limit to automatically log out after a period of inactivity.
4. Explore GitLab Features:
Purpose:
· Understand and utilize key features of GitLab for effective collaboration.
Steps:
1. Explore the GitLab dashboard and menu options.
2. Create a new project/repository.
3. Learn about issues, merge requests, CI/CD pipelines, and other collaboration features.
5. Read GitLab Documentation:
Purpose:
· Stay informed about GitLab's capabilities and best practices.
Steps:
1. Visit the GitLab documentation.

Creating SSH Key
Step 1 − To create SSH key, open the command prompt and enter the command as shown below −
C:\−ssh-keygen
It will prompt for 'Enter file in which to save the key (//.ssh/id_rsa):', just type file name and press enter. Next a prompt to enter password shows 'Enter passphrase (empty for no passphrase):'. Enter some password and press enter. You will see the generated SSH key as shown in the below image −
[image: GitLab SSH key]
Step 2 − Now login to your GitLab account and click on the Settings option.
[image: GitLab SSH key]
Step 3 − To create SSH key, click on the SSH keys tab at left side of the menu.
[image: GitLab SSH key]
Step 4 − Now go to C drive, you will see the file with .pub extension which was generated in the first step.
[image: GitLab SSH key]
Step 5 − Next open the key.pub file, copy the SSH key and paste it in the highlighted Key box as shown in the below image −
[image: GitLab SSH key]
Step 6 − Click on the Add Key button, to add SSH key to your GitLab. You will see the fingerprint (it is a short version of SSH key), title and created date as shown in the image below −
[image: GitLab SSH key]

Setup Gitbash with two different gmail account:-

If you want to use two different GitLab accounts on the same machine using Git Bash, you can do this by configuring multiple SSH keys and associated profiles. Here are the steps:

1. Generate SSH Keys for Each Account:
ssh-keygen -t rsa -C "your_email_account1@example.com" -f ~/.ssh/id_rsa_account1
Follow the on-screen prompts to generate the key.
ssh-keygen -t rsa -C "your_email_account2@example.com" -f ~/.ssh/id_rsa_account2
2. Add SSH Keys to the SSH Agent:
Add the first SSH key to the SSH agent
ssh-add ~/.ssh/id_rsa_account1

Add the second SSH key to the SSH agent
ssh-add ~/.ssh/id_rsa_account2
3. Add SSH Keys to GitLab Accounts:
1. Copy the contents of ~/.ssh/id_rsa_account1.pub and add it to the SSH keys section of your first GitLab account.
2. Copy the contents of ~/.ssh/id_rsa_account2.pub and add it to the SSH keys section of your second GitLab account.
4. Configure SSH Config File:
Create or edit the SSH config file (~/.ssh/config) using a text editor like Nano or Vim:
nano ~/.ssh/config
Add the following configuration:
Account 1
Host gitlab.com-account1
 HostName gitlab.com
 User git
 IdentityFile ~/.ssh/id_rsa_account1

Account 2
Host gitlab.com-account2
 HostName gitlab.com
 User git
 IdentityFile ~/.ssh/id_rsa_account2
5. Test the Connections:
Test Account 1
ssh -T git@gitlab.com-account1

Test Account 2
ssh -T git@gitlab.com-account2
6. Configure Git User for Each Repository:
For each repository, set the Git user to the corresponding GitLab account:
For Account 1
git config user.name "Your Name Account 1"
git config user.email "your_email_account1@example.com"

For Account 2
git config user.name "Your Name Account 2"
git config user.email "your_email_account2@example.com"
Now, you should be able to interact with GitLab repositories using different accounts on the same machine. When cloning a repository, make sure to use the appropriate SSH URL, such as git@gitlab.com-account1:username/repo.git or git@gitlab.com-account2:username/repo.git.

Gitlab – git commands:-
The version of the Git can be checked by using the below command −
$ git --version
Add Git username and email address to identify the author while committing the information. Set the username by using the command as −
$ git config --global user.name "USERNAME"
After entering user name, verify the entered user name with the below command −
$ git config --global user.name
Next, set the email address with the below command −
$ git config --global user.email "email_address@example.com"
You can verify the entered email address as −
$ git config --global user.email
Use the below command to check the entered information −
$ git config --global --list
You can pull the latest changes made to the master branch by using the below command −
$ git checkout master
You can fetch the latest changes to the working directory with the below command −
$ git pull origin NAME-OF-BRANCH -u
Here, NAME-OF-BRANCH could be 'master' or any other existing branch.
Create a new branch with the below command −
$ git checkout -b branch-name
You can switch from one branch to other branch by using the command as −
$ git checkout branch-name
Check the changes made to your files with the below command −
$ git status
You will see the changes in red color and add the files to staging as −
$ git add file-name
Or you can add all the files to staging as −
$ git add *
Now send your changes to master branch with the below command −
$ git push origin branch-name
Delete the all changes, except unstaged things by using the below command −
$ git checkout .
You can delete the all changes along with untracked files by using the command as −
$ git clean -f
To merge the different branch with the master branch, use the below command −
$git checkout branch-name
$ git merge master
You can also merge the master branch with the created branch, by using the below command −
$git checkout master
$ git merge branch-name

Setup runner:-
Installation of GitLab on Windows:
Step 1 − First create a folder called 'GitLab-Runner' in your system. For instance, you can create in C drive as C:\GitLab-Runner.
Step 2 − Now download the binary for x86 or amd64 and copy it in the folder created by you. Rename the downloaded binary to gitlab-runner.exe.
Step 3 − Open the command prompt and navigate to your created folder. Now type the below command and press enter.
C:\GitLab-Runner>gitlab-runner.exe register
Step 4 − After running the above command, it will ask to enter the gitlab-ci coordinator URL.
Please enter the gitlab-ci coordinator URL (e.g. https://gitlab.com/):
https://gitlab.com
Step 5 − Enter the gitlab-ci token for the runner.
Please enter the gitlab-ci token for this runner:
xxxxx
· To get the token, login to your GitLab account −
[image: GitLab Installation]
· Now go to your project −
[image: GitLab Installation]
· Click on the CI/CD option under Settings tab and expand the Runners Settings option.
[image: GitLab Installation]
· Under Runners Settings section, you will get the token as shown in the image below −
[image: GitLab Installation]
Step 6 − Enter the gitlab-ci description for the runner.
Please enter the gitlab-ci description for this runner:
[Admin-PC]: Hello GitLab Runner
Step 7 − It will ask to enter the gitlab-ci tags for the runner.
Please enter the gitlab-ci tags for this runner (comma separated):
tag1, tag2
You can change these tags in the GitLab's user interface later.
Step 8 − You can lock the Runner to current project by setting it to true value.
Whether to lock the Runner to current project [true/false]:
[true]: true
After completing above steps, you will get the successful message as 'Registering runner... succeeded'.
Step 9 − Now enter the Runner executor for building the project.
Please enter the executor: parallels, shell, docker+machine, kubernetes, docker-
ssh+machine, docker, docker-ssh, ssh, virtualbox:
docker
We have used the selector as 'docker' which creates build environment and manages the dependencies easily for developing the project.
Step 10 − Next it will ask for default image to be set for docker selector.
Please enter the default Docker image (e.g. ruby:2.1):
alpine:latest
Step 11 − After completing the above steps, it will display the message as 'Runner registered successfully'. The below image will describe the working flow of above commands −
[image: GitLab Installation]
Step 12 − Now go to your project, click on the CI/CD option under Settings section and you will see the activated Runners for the project.
[image: GitLab Installation]
You can see the GitLab Runner configuration in the config.toml file under the GitLab-Runner folder as shown below −
concurrent = 1
check_interval = 0
[[runners]]
 name = "Hello GitLab Runner"
 url = "https://gitlab.com"
 token = "40ceed29eec231fa9e306629cae4d7"
 executor = "docker"
 [runners.docker]
 tls_verify = false
 image = "alpine:latest"
 privileged = false
 disable_cache = false
 volumes = ["/cache"]
 shm_size = 0
 [runners.cache]

Create project :-
Step 1 − To create new project, login to your GitLab account and click on the New project button in the dashboard −
[image: GitLab Create Project]
Step 2 − It will open the New project screen as shown below in the image −
[image: GitLab Create Project]
Enter the project name, description for the project, visibility level (accessing the project's visibility in publicly or internally) and click on the Create project button.
Step 3 − Next it will create a new project (here given the project name as first-gitlab-prjt) with successful message as shown below −
[image: GitLab Create Project]
Push the Repository to Project
Step 4 − You can clone the repository to your local system by using the git-clone command −
[image: GitLab Create Project]
The clone command makes a copy of repository into a new directory called first-gitlab-prjt.
Step 5 − Now go to your newly created directory and type the below command −
C:\>cd first-gitlab-prjt
C:\first-gitlab-prjt>touch README.md
The above command creates a README.md file in which you can put the information about your folder.
Step 6 − Add the README.md file to your created directory by using the below command −
C:\first-gitlab-prjt>git add README.md
Step 7 − Now store the changes to the repository along with the log message as shown below −
C:\first-gitlab-prjt>git commit -m "add README"
The flag -m is used for adding a message on the commit.
Step 8 − Push the commits to remote repository which are made on the local branch −
C:\first-gitlab-prjt>git push -u origin master
The below image depicts the usage of above commands in pushing the commits to remote repository −
[image: GitLab Create Project]

Forking a Project:-
Step 1 − To fork a project, click on the Fork button as shown below −
[image: GitLab Fork Project]
Step 2 − After forking the project, you need to add the forked project to a fork group by clicking on it −
[image: GitLab Fork Project]
Step 3 − Next it will start processing of forking a project for sometime as shown below −
[image: GitLab Fork Project]
Step 4 − It will display the success message after completion of forking the project process −
[image: GitLab Fork Project]
Creating a Branch
Step 1 − Login to your GitLab account and go to your project under Projects section.
[image: GitLab Create Branch]
Step 2 − To create a branch, click on the Branches option under the Repository section and click on the New branch button.
[image: GitLab Create Branch]
Step 3 − In the New branch screen, enter the name for branch and click on the Create branch button.
[image: GitLab Create Branch]
Step 4 − After creating branch, you will get a below screen along with the created branch.
[image: GitLab Create Branch]
Creating a file using Command Line Interface
Step 1 − To create a file by using command line interface, type the below command in your project directory −
[image: GitLab Create File]
Step 2 − Now go to your project directory and you will see the created file −
[image: GitLab Create File]
Creating a file using Web Interface
Step 1 − You can create a new file, by clicking on the '+' button which is at the right side of the branch selector in the dashboard −
[image: GitLab Create File]
Step 2 − Enter the file name, add some content in the editor section and click on the Commit changes button to create the file.
[image: GitLab Create File]
Step 3 − Now you will get a successful message after creating the file as shown below −
[image: GitLab Create File]

Steps for Rebase Operation
Step 1 − Go to your project directory and create a new branch with the name rebase-example by using the git checkout command −
[image: GitLab Rebase Operation]
The flag -b indicates new branch name.
Step 2 − Now, create a new file and add some content to that file as shown below −
[image: GitLab Rebase Operation]
The content 'Welcome to Tutorialspoint' will be added to the rebase_file.md file.
Step 3 − Add the new file to working directory and store the changes to the repository along with the message (by using the git commit command) as shown below −
[image: GitLab Rebase Operation]
The flag -m is used for adding a message on the commit.
Step 4 − Now, switch to the 'master' branch. You can fetch the remote branch(master is a branch name) by using the git checkout command −
[image: GitLab Rebase Operation]
Step 5 − Next, create an another new file, add some content to that file and commit it in the master branch.
[image: GitLab Rebase Operation]
Step 6 − Switch to the rebase-branch to have the commit of master branch.
[image: GitLab Rebase Operation]
Step 7 − Now, you can combine the commit of master branch to rebase-branch by using the git rebase command −
[image: GitLab Rebase Operation]

Steps for Squashing Commits
Step 1 − Go to your project directory and check out a new branch with the name squash-chapter by using the git checkout command −
[image: GitLab Squashing Commits]
The flag -b indicates new branch name.
Step 2 − Now, create a new file with two commits, add that file to working directory and store the changes to the repository along with the commit messages as shown below −
[image: GitLab Squashing Commits][image: GitLab Squashing Commits]
Step 3 − Now, squash the above two commits into one commit by using the below command −
$ git rebase -i HEAD~2
Here, git rebase command is used to integrate changes from one branch to another and HEAD~2 specifies last two squashed commits and if you want to squash four commits, then you need to write as HEAD~4. One more important point is, you need atleast two commits to complete the squash operation.
Step 4 − After entering the above command, it will open the below editor in which you have to change the pick word to squash word in the second line (you need to squash this commit).
[image: GitLab Squashing Commits]
Now press the Esc key, then colon(:) and type wq to save and exit from the screen.
Step 5 − Now push the branch to remote repository as shown below −
[image: GitLab Squashing Commits]
CI/CD pipeline:-

Create a YAML Configuration File
Create a file named .gitlab-ci.yml in the root of the project folder to define your CI/CD jobs.

GitLab takes a snapshot of data when each release is created and saves this data as a JSON file called release evidence, which contains information such as the name, tag name, description, project details, and reports artifact if it has been included in the .gitlab-ci.yml file.

GitLab Users and Groups

Steps for Adding User
Step 1 − Login to your GitLab account and go to your project under Projects section.
[image: GitLab Create Branch]
Step 2 − Next, click on the Members option under Settings tab −
[image: GitLab Adding User]
Step 3 − It will open the below screen to add the member to your project −
[image: GitLab Adding User]
Step 4 − Now enter the user name, role permission, expiration date(optional) and click on Add to project button to add the user to project −
[image: GitLab Adding User]
Step 5 − Next, you will get a successful message after adding user to the project.
[image: GitLab Adding User]
The highlighted box in the above image indicates, a new user has been added to the project −
Step 6 − You can also add user to the project by clicking on the Import button −
[image: GitLab Adding User]
Step 7 − Now select the project from which you want to add the user to your project and click on the Import project members button −
[image: GitLab Adding User]
Step 8 − You will get a success message after importing user to the project −
[image: GitLab Adding User]

	Steps for Creating Group
Step 1 − Login to your GitLab account and click on the Groups menu −
[image: GitLab Creating Group]
Step 2 − Next, you will get the below screen and click on the New group button to create a group −
[image: GitLab Creating Group]
Step 3 − Enter the Group name, Description, visibility level(Private/Public/Internal) and also you can set the image for the group of your choice which should be within 200kb in size. Now click on the Create group button.
[image: GitLab Creating Group]
Step 4 − Next, it will display the success message after creating the group as shown below −
[image: GitLab Creating Group]
Step 5 − Now, go back to your Groups section and you will see the created group in the list −
[image: GitLab Creating Group]

	Steps for Removing User
Step 1 − Login to your GitLab account and go to your project under Projects section −
[image: GitLab Remove User]
Step 2 − Now, click on the Members option under Settings tab −
[image: GitLab Remove User]
Step 3 − You will see the list of users under Existing members and groups section and click on the delete option at right side to remove the user from project −
[image: GitLab Remove User]
Step 4 − After clicking remove button, it will display a pop-up window saying whether to remove the selected user from the project or not. Click on Ok button to remove the user.
[image: GitLab Remove User]
Step 5 − Now, it will display the success message after removing the user from the project as shown in the image below −
[image: GitLab Remove User]

	Steps for creating User Permissions
Step 1 − Login to your GitLab account and click on the Members option under Settings tab −
[image: GitLab User Permission]
Step 2 − It will open the below screen to add the member to your project −
[image: GitLab User Permission]
Step 3 − You will see the different types of permissions when you click on a dropdown under Choose a role permission section −
[image: GitLab User Permission]
You can see the Adding users chapter for setting user permission and adding user to project. Here, we will briefly discuss about different user permissions which can be applied to projects.
The following table shows available permission levels for different types of users −
	S.N.
	Guest
	Reporter
	Developer
	Master

	1
	Creates a new issue
	Creates a new issue
	Creates a new issue
	Creates a new issue

	2
	Can leave comments
	Can leave comments
	Can leave comments
	Can leave comments

	3
	Able to write on project wall
	Able to write on project wall
	Able to write on project wall
	Able to write on project wall

	4
	-
	Able to pull project code
	Able to pull project code
	Able to pull project code

	5
	-
	Can download project
	Can download project
	Can download project

	6
	-
	Able to write code snippets
	Able to write code snippets
	Able to write code snippets

	7
	-
	-
	Create new merge request
	Create new merge request

	8
	-
	-
	Create new branch
	Create new branch

	9
	-
	-
	Push and remove non protected branches
	Push and remove non protected branches

	10
	-
	-
	Includes tags
	Includes tags

	11
	-
	-
	Can create, edit, delete project milestones
	Can create, edit, delete project milestones

	12
	-
	-
	Can create or update commit status
	Can create or update commit status

	13
	-
	-
	Write a wiki
	Write a wiki

	14
	-
	-
	Create new environments
	Create new environments

	15
	-
	-
	Cancel and retry the jobs
	Cancel and retry the jobs

	16
	-
	-
	Updates and removes the registry image
	Updates and removes the registry image

	17
	-
	-
	-
	Can add new team members

	18
	-
	-
	-
	Push and remove protected branches

	19
	-
	-
	-
	Can edit the project

	20
	-
	-
	-
	Can manage runners, job triggers and variables

	21
	-
	-
	-
	Add deploy keys to project

	22
	-
	-
	-
	Able to manage clusters

	23
	-
	-
	-
	Configure project hooks

	24
	-
	-
	-
	Can enable/disable the branch protection

	25
	-
	-
	-
	Able to rewrite or remove Git tags

GitLab Instance Management

GitLab - Create Backup

GitLab allows to take backup copy of your repository by using simple command. In this chapter, we will discuss about how to take backup copy in the GitLab −
Step 1 − First, login to your GitLab server using SSH (Secure Shell).
Step 2 − Create the backup of GitLab by using the below command −
sudo gitlab-rake gitlab:backup:create
[image: GitLab Create Backup]
Step 3 − You can exclude some directories from the backup by adding environment variable SKIP as shown below −
sudo gitlab-rake gitlab:backup:create SKIP = db,uploads
[image: GitLab Create Backup]
Step 4 − The backup tar file will get created in the default /var/opt/gitlab/backups directory. Navigate to this path and type ls -l to see the created backup file −
[image: GitLab Create Backup]

	GitLab - Restore Backup

GitLab allows restoring the backup copy of your repository. In this chapter, we will discuss about how to restore the backup copy in the GitLab −
Step 1 − First, login to your GitLab server using SSH (Secure Shell).
Step 2 − Before restoring the backup copy, first make sure backup copy is in the /var/opt/gitlab/backups directory.
Step 3 − You can check the backup copy by using the ls -l command which is described in the Create Backup job chapter.
Step 4 − Now, stop the processes which are related to the database by using the below commands −
sudo gitlab-ctl stop unicorn

sudo gitlab-ctl stop sidekiq
[image: GitLab Restore Backup]
The above commands can also be used to free up some memory temporarily by shutting down them.
Step 5 − You can verify status of the GitLab services by using the below command −
sudo gitlab-ctl status
Step 6 − Now, restore the backup by using the timestamp of the backup copy −
sudo gitlab-rake gitlab:backup:restore BACKUP = 1521884424_2018_03_24_10.5.3
[image: GitLab Restore Backup]
Step 7 − Restart the GitLab components by using the below command −
sudo gitlab-ctl restart
[image: GitLab Restore Backup]
Step 8 − Now check the GitLab by sanitizing the database as shown below −
sudo gitlab-rake gitlab:check SANITIZE = true
[image: GitLab Restore Backup]
The SANITIZE = true flag removes all email addresses because they are confidential, removes the CI variables and access tokens as they can be used in the production instance.

GitLab - Import Repository

In this chapter, we will discuss about how to import a repository from Bitbucket to GitLab −
Step 1 − Login to your GitLab account and click on the New project button in the dashboard −
[image: GitLab Create Project]
Step 2 − Click on the Bitbucket button under Import project tab −
[image: GitLab Import Repository]
Step 3 − Next, you need to login to your Bitbucket account. If you don't have an account, then create a new account by clicking on Sign up link and then login to Bitbucket account.
[image: GitLab Import Repository]
Step 4 − When you click on the Bitbucket button (shown in step 2), it will display the below screen and click on the Grant access button −
[image: GitLab Import Repository]
You need to grant the access to read the account information, repository issues, project settings, and modify the repositories.
Step 5 − Click on the Import button to import the project from Bitbucket −
[image: GitLab Import Repository]
Step 6 − After importing the project successfully, it will display the status as Done −
[image: GitLab Import Repository]

GitLab Continuous Integration
GitLab - CI/CD Variables

The following table shows list of GitLab CI/CD variables.
	S.No.
	Variable
	GitLab
	Runner
	Description

	1
	CI
	all
	0.4
	Specifies that job is accomplished in CI environment.

	2
	CI_COMMIT_REF_NAME
	9.0
	all
	Defines the branch or tag name for project build.

	3
	CI_COMMIT_REF_SLUG
	9.0
	all
	It uses the lowercased $CI_COMMIT_REF_NAME variable which is reduced to 63 bytes, and only 0-9 and a-z replaced with -.

	4
	CI_COMMIT_SHA
	9.0
	all
	Specifies the commit revision for built project.

	5
	CI_COMMIT_TAG
	9.0
	0.5
	It commits the tag name

	6
	CI_CONFIG_PATH
	9.4
	0.5
	Specifies the path to CI config file. (The default path is .gitlab-ci.yml).

	7
	CI_DEBUG_TRACE
	all
	1.7
	It enables the debug tracing.

	8
	CI_ENVIRONMENT_NAME
	8.15
	all
	Defines the environment name for the job.

	9
	CI_ENVIRONMENT_SLUG
	8.15
	all
	It is a environment name, suitable for DNS, URLs, Kubernetes labels, etc.

	10
	CI_ENVIRONMENT_URL
	9.3
	all
	Defines the environment URL for the job.

	11
	CI_JOB_ID
	9.0
	all
	Represents the unique id of the current job for GitLab CI.

	12
	CI_JOB_MANUAL
	8.12
	all
	It specifies that job has been started manually.

	13
	CI_JOB_NAME
	9.0
	0.5
	The job name is defined in the .gitlab-ci.yml file.

	14
	CI_JOB_STAGE
	9.0
	0.5
	The stage name is defined in the .gitlab-ci.yml file.

	15
	CI_JOB_TOKEN
	9.0
	1.2
	This token is used for authenticating with the GitLab Container Registry and multi-project pipelines when triggers are involved.

	16
	CI_REPOSITORY_URL
	9.0
	all
	It specifies the URL to clone the Git repository.

	17
	CI_RUNNER_DESCRIPTION
	8.10
	0.5
	It specifies the description for the runner.

	18
	CI_RUNNER_ID
	8.10
	0.5
	It provides the unique id for runner being used.

	19
	CI_RUNNER_TAGS
	8.10
	0.5
	It defines the runner tags.

	20
	CI_RUNNER_VERSION
	all
	10.6
	It specifies the GitLab runner version of the current job.

	21
	CI_RUNNER_REVISION
	all
	10.6
	It specifies the GitLab revision of the current job.

	22
	CI_PIPELINE_ID
	8.10
	0.5
	It provides the unique id of the current pipeline.

	23
	CI_PIPELINE_SOURCE
	9.3
	all
	It specifies how the pipeline was triggered by using some options such as push, web, trigger, schedule, api, pipeline.

	24
	CI_PIPELINE_TRIGGERED
	all
	all
	It specifies that job was triggered.

	25
	CI_PIPELINE_SOURCE
	10.0
	all
	It specifies source of the pipeline such as push, web, trigger, schedule, api, external.

	26
	CI_PROJECT_DIR
	all
	all
	It defines the full path of the cloned repository, where the job is run.

	27
	CI_PROJECT_ID
	all
	all
	It provides the unique id of the current project.

	28
	CI_PROJECT_NAME
	8.10
	0.5
	It provides the name of the current project.

	29
	CI_PROJECT_PATH
	8.10
	0.5
	It provides the name of the project along with namespace.

	30
	CI_PROJECT_URL
	8.10
	0.5
	It gives the http address to retrieve the project.

	31
	CI_PROJECT_VISIBILITY
	10.3
	all
	It specifies the project visibility whether it is internal, private or public.

	32
	CI_REGISTRY
	8.10
	0.5
	It returns the address of GitLab's Container Registry, only if the Container Registry is enabled.

	33
	CI_REGISTRY_IMAGE
	8.10
	0.5
	It returns the address of GitLab's Container Registry which is tied to specific project, only if the Container Registry is enabled.

	34
	CI_REGISTRY_PASSWORD
	9.0
	all
	The password can be used to push the containers to the GitLab Container Registry.

	35
	CI_REGISTRY_USER
	9.0
	all
	The username can be used to push the containers to the GitLab Container Registry.

	36
	CI_SERVER
	all
	all
	It specifies that job is executed in CI environment.

	37
	CI_SERVER_NAME
	all
	all
	It gives the CI server name to coordinate the jobs.

	38
	CI_SERVER_REVISION
	all
	all
	It is used to schedule the jobs by using GitLab revision.

	39
	CI_SERVER_VERSION
	all
	all
	It is used to schedule the jobs by using GitLab version.

	40
	CI_SHARED_ENVIRONMENT
	all
	10.1
	It indicates that job is executed in a shared environment and it is set to true, if the environment is shared.

	41
	ARTIFACT_DOWNLOAD_ATTEMPTS
	8.15
	1.9
	It specifies the number of attempts to download artifacts running a job.

	42
	GET_SOURCES_ATTEMPTS
	8.15
	1.9
	It specifies the number of attempts to get the sources running a job.

	43
	GITLAB_CI
	all
	all
	It specifies that job is accomplished in GitLab CI environment.

	44
	GITLAB_USER_ID
	8.12
	all
	It specifies the id of GitLab user who is running a job.

	45
	GITLAB_USER_EMAIL
	8.12
	all
	It specifies the email of GitLab user who is running a job.

	46
	GITLAB_USER_LOGIN
	10.0
	all
	It specifies the login username of GitLab user who is running a job.

	47
	GITLAB_USER_NAME
	10.0
	all
	It specifies the real name of GitLab user who is running a job.

	48
	GITLAB_FEATURES
	10.6
	all
	It provides list of the licensed features for the GitLab instance and plan.

	49
	RESTORE_CACHE_ATTEMPTS
	8.15
	1.9
	It defines number of cache attempts to restore the running a job.

	50
	CI_DISPOSABLE_ENVIRONMENT
	all
	10.1
	It indicates that job is executed in a disposable environment and it is set to true, if the environment is disposable.

The following table shows list of new variables which can be used with GitLab 9.0 release −
	S.No.
	9.0+ name

	1
	CI_JOB_ID

	2
	CI_COMMIT_SHA

	3
	CI_COMMIT_TAG

	4
	CI_COMMIT_REF_NAME

	5
	CI_COMMIT_REF_SLUG

	6
	CI_JOB_NAME

	7
	CI_JOB_STAGE

	8
	CI_REPOSITORY_URL

	9
	CI_PIPELINE_TRIGGERED

	10
	CI_JOB_MANUAL

	11
	CI_JOB_TOKEN

GitLab CI - Permissions

User Permissions
The following table shows available user permissions levels for different types of users in a project −
	S.N.
	Guest
	Reporter
	Developer
	Master
	Owner

	1
	Creates a new issue
	Creates a new issue
	Creates a new issue
	Creates a new issue
	Creates a new issue

	2
	Can leave comments
	Can leave comments
	Can leave comments
	Can leave comments
	Can leave comments

	3
	Able to write on project wall
	Able to write on project wall
	Able to write on project wall
	Able to write on project wall
	Able to write on project wall

	4
	-
	Able to pull project code
	Able to pull project code
	Able to pull project code
	Able to pull project code

	5
	-
	Can download project
	Can download project
	Can download project
	Can download project

	6
	-
	Able to write code snippets
	Able to write code snippets
	Able to write code snippets
	Able to write code snippets

	7
	-
	-
	Create new merge request
	Create new merge request
	Create new merge request

	8
	-
	-
	Create new branch
	Create new branch
	Create new branch

	9
	-
	-
	Push and remove non protected branches
	Push and remove non protected branches
	Push and remove non protected branches

	10
	-
	-
	Includes tags
	Includes tags
	Includes tags

	11
	-
	-
	Can create, edit, delete project milestones
	Can create, edit, delete project milestones
	Can create, edit, delete project milestones

	12
	-
	-
	Can create or update commit status
	Can create or update commit status
	Can create or update commit status

	13
	-
	-
	Write a wiki
	Write a wiki
	Write a wiki

	14
	-
	-
	Create new environments
	Create new environments
	Create new environments

	15
	-
	-
	Cancel and retry the jobs
	Cancel and retry the jobs
	Cancel and retry the jobs

	16
	-
	-
	Updates and removes the registry image
	Updates and removes the registry image
	Updates and removes the registry image

	17
	-
	-
	-
	Can add new team members
	Can add new team members

	18
	-
	-
	-
	Push and remove protected branches
	-

	19
	-
	-
	-
	Can edit the project
	Can edit the project

	20
	-
	-
	-
	Can manage runners, job triggers and variables
	Can manage runners, job triggers and variables

	21
	-
	-
	-
	Add deploy keys to project
	Add deploy keys to project

	22
	-
	-
	-
	Able to manage clusters
	Able to manage clusters

	23
	-
	-
	-
	Configure project hooks
	Configure project hooks

	24
	-
	-
	-
	Can enable/disable the branch protection
	Can enable/disable the branch protection

	25
	-
	-
	-
	Able to rewrite or remove Git tags
	Able to rewrite or remove Git tags

The following table shows available group members permissions levels in a group −
	S.N.
	Guest
	Reporter
	Developer
	Master
	Owner

	1
	Browse group
	Browse group
	Browse group
	Browse group
	Browse group

	2
	-
	-
	-
	-
	Edit group

	3
	-
	-
	-
	-
	Create subgroup

	4
	-
	-
	-
	Create project in group
	Create project in group

	5
	-
	-
	-
	-
	Manage group members

	6
	-
	-
	-
	-
	Remove group

	7
	-
	Manage group labels
	Manage group labels
	Manage group labels
	Manage group labels

	8
	-
	-
	Create/edit/delete group milestones
	Create/edit/delete group milestones
	Create/edit/delete group milestones

	9
	-
	View private group epic
	View private group epic
	View private group epic
	View private group epic

	10
	-
	-
	-
	-
	-

	11
	View internal group epic
	View internal group epic
	View internal group epic
	View internal group epic
	View internal group epic

	12
	View public group epic
	View public group epic
	View public group epic
	View public group epic
	View public group epic

	13
	-
	Create/edit group epic
	Create/edit group epic
	Create/edit group epic
	Create/edit group epic

	14
	-
	-
	-
	-
	Delete group epic

	15
	-
	-
	-
	-
	View group Audit Events

The following table shows available GitLab CI/CD permissions in the GitLab −
	S.N.
	Guest/Reporter
	Developer
	Master
	Admin

	1
	Can see commits and jobs
	Can see commits and jobs
	Can see commits and jobs
	Can see commits and jobs

	2
	
	Retry or cancel job
	Retry or cancel job
	Retry or cancel job

	3
	-
	Deletes job artifacts and trace
	Deletes job artifacts and trace
	Deletes job artifacts and trace

	4
	-
	-
	Remove project
	Remove project

	5
	-
	-
	Create project
	Create project

	6
	-
	-
	Change project configuration
	Change project configuration

	7
	-
	-
	Add specific runners
	Add specific runners

	8
	-
	-
	-
	Add shared runners

	9
	-
	-
	-
	Can able to see events in the system

	10
	-
	-
	-
	Admin interface

Job Permissions
The following table shows job permissions in the GitLab −
	S.N.
	Guest/Reporter
	Developer
	Master
	Admin

	1
	-
	Run CI job
	Run CI job
	Run CI job

	2
	-
	Clone source and LFS from current project
	Clone source and LFS from current project
	Clone source and LFS from current project

	3
	-
	Clone source and LFS from public projects
	Clone source and LFS from public projects
	Clone source and LFS from public projects

	4
	-
	Clone source and LFS from internal projects
	Clone source and LFS from internal projects
	Clone source and LFS from internal projects

	5
	-
	Clone source and LFS from private projects
	Clone source and LFS from private projects
	Clone source and LFS from private projects

	6
	-
	Push source and LFS
	Push source and LFS
	Push source and LFS

	7
	-
	Pull container images from current project
	Pull container images from current project
	Pull container images from current project

	8
	-
	Pull container images from public projects
	Pull container images from public projects
	Pull container images from public projects

	9
	-
	Pull container images from internal projects
	Pull container images from internal projects
	Pull container images from internal projects

	10
	-
	Pull container images from private projects
	Pull container images from private projects
	Pull container images from private projects

	11
	-
	Push container images to current project
	Push container images to current project
	Push container images to current project

	12
	-
	Push container images to other projects
	Push container images to other projects
	Push container images to other projects

Note − LFS stands for Large File Storage which is a Git extension that exchanges the large files such as audio, video, graphics with tiny pointers files in your repository.
GitLab CI - Configuring Gitlab Runners

Description
GitLab runner is a build instance which is used to run the jobs over multiple machines and send the results to GitLab and which can be placed on separate users, servers, and local machine. You can register the runner as shared or specific after installing it. The installation of runner is explained in the GitLab Installation chapter.
You can serve your jobs by using either specific or shared runners.
Shared Runners
These runners are useful for jobs multiple projects which have similar requirements. Instead of using multiple runners for many projects, you can use a single or a small number of Runners to handle multiple projects which will be easy to maintain and update.
Specific Runners
These runners are useful to deploy a certain project, if jobs have certain requirements or specific demand for the projects. Specific runners use FIFO (First In First Out) process for organizing the data with first-come first-served basis.
You can register a specific runner by using project registration token. The registering a specific runner is explained in the GitLab Installation chapter from step 1 to 12 under the Installation of GitLab on Windows section.
Locking a specific Runner
You can lock a specific runner from being enabled for other projects. To do this, you need to register a runner which is explained in the GitLab Installation chapter from step 1 to 12 under the Installation of GitLab on Windows section.
To lock runner, execute the below steps −
Step 1 − Login to your GitLab account and go to your project −
[image: GitLab Installation]
Step 2 − Click on the CI/CD option under Settings tab and expand the Runners Settings option. −
[image: GitLab Installation]
Step 3 − Under Runners Settings section, you will see the activated Runners for the project −
[image: GitLab Installation]
Step 4 − Now click on the pencil button −
[image: GitLab Runner]
Step 5 − Next it will open the Runner screen and check the Lock to current projects option −
[image: GitLab Runner]
Click on the Save changes button to take the changes effect.
Step 6 − After saving the changes, it will update the Runner successfully.
[image: GitLab Runner]
Protected Runners
The runners can be protected to save the important information. You can protect the runner by using below steps −
Step 1 − Follow the same steps (from step 1 to 4) which are explained in the previous section (Locking a specific Runner).
Step 2 − After clicking on the pencil button, it will open the Runner screen and then check the Protected option −
[image: GitLab Installation]
Click on the Save changes button to take the changes effect.
Run untagged Jobs
You can prevent runners from picking jobs with tags when there are no tags assigned to runners. Runner can pick tagged/untagged jobs by using below steps −
Step 1 − Follow the same steps (from step 1 to 4) which are explained in the Locking a specific Runner section.
Step 2 − After clicking on the pencil button, it will open the Runner screen and then check the Run untagged jobs option −
[image: GitLab Installation]
Click on the Save changes button to take the changes effect.
GitLab CI - Advanced usage of CI

Environments and Deployments
Environments are used for testing, building and deploying the CI (Continuous Integration) jobs and control the Continuous Deployment of software with the GitLab. GitLab CI is capable of tracking your project deployments and also you will come to know what is being deployed on your server.
The name of an environment could be defined by using environment:name string and contain the following −
· letters
· digits
· spaces
· -
· _
· /
· $
· {
· }
Using SSH keys with GitLab CI/CD
You can set the SSH (Secure Shell or Secure Socket Shell) keys to provide a reliable connection between the computer and GitLab. The SSH keys can be used with GitLab CI/CD when −
· You need to checkout internal sub modules.
· You need to download private packages using package manager.
· You need to install an application to your own server.
· You execute the SSH commands to remote server from build environment.
· You need to rsync files to a remote server from the build environment.
The SSH key setup is explained in the GitLab SSH Key Setup chapter.
Artifacts
Artifacts are used to attach the list of files and directories to the job after success. The artifacts contain following types −
· artifacts:name − This directive is used to specify the name of created artifacts archive. It provides unique name for created artifacts archive which is helpful when you are downloading the archive from GitLab.
· artifacts:when − This directive is used to upload artifacts when there is a job failure. It contains the following values:
· on_success − It is used to upload the artifacts when there is a job success.
· on_failure − It is used to upload the artifacts when the job fails.
· always − It is used to upload the artifacts regardless of job status.
· artifacts:expire_in − It defines that how long artifacts should live before they expire and therefore deleted, since they are uploaded and stored on GitLab
Triggering Pipelines
Triggers can force a specific branch or tag to get rebuilt with an API call and triggers with the legacy label will have access to the current project.
The new trigger can be added as shown in the below steps −
Step 1 − Login to your GitLab account and go to your project −
[image: GitLab Usage of CI]
Step 2 − Click on the CI/CD option under Settings tab and expand the Pipeline triggers option −
[image: GitLab Usage of CI]
Enter the description for the trigger and click on the Add Trigger button.
Step 3 − Next, it will display the success message after creating the trigger −
[image: GitLab Usage of CI]
Step 4 − Now go to CI/CD option under Settings tab and expand the Pipeline triggers option. You will see the newly created trigger along with the token as shown in the image below −
[image: GitLab Usage of CI]
Pipeline Schedules
You can run the pipeline by using the pipeline schedules at specific intervals. To create pipeline schedule, use the below steps −
Step 1 − Login to your GitLab account and go to your project −
[image: GitLab Usage of CI]
Step 2 − Click on the Schedules option under CI/CD tab and click on the New schedule button −
[image: GitLab Usage of CI]
Step 3 − Next, it will open the Scheduling new pipeline screen, fill up the fields and click on the Save pipeline schedule button −
[image: GitLab Usage of CI]
Step 4 − Now, you will see the pipeline which is scheduled to run −
[image: GitLab Usage of CI]
Connecting GitLab with a Kubernetes Cluster
The Kubernetes cluster can be used to review and deploy the applications, running the pipeline etc in an easy method. You can create a new cluster to your project by associating your GitLab account with the Google Kubernetes Engine (GKE).
The new Kubernetes cluster can be created as shown in the below steps −
Step 1 − Login to your GitLab account and go to your project −
[image: GitLab Usage of CI]
Step 2 − Click on the Kubernetes option under CI/CD tab −
[image: GitLab Usage of CI]
Step 3 − Next, click on Add Kubernetes cluster button −
[image: GitLab Usage of CI]
Step 4 − Click on Create on GKE button to create a new Kubernetes cluster on Google Kubernetes Engine −
[image: GitLab Usage of CI]
Step 5 − If you have a Google account, then sign with that account to enter the details for Kubernetes cluster or else create a new Google account −
[image: GitLab Usage of CI]
Step 6 − Now enter the values in the fields for your Kubernetes cluster −
[image: GitLab Usage of CI]
Step 7 − Before adding values in the fields, you need ID of the project which is created in the Google Cloud Platform console to host the Kubernetes cluster. To create ID, click on the See your projects link which is highlighted in the previous image. It will open the below screen, then click on My Project menu and click on the plus (+) icon to create a new project −
[image: GitLab Usage of CI]
Step 8 − Now enter the project name and click on the Create button −
[image: GitLab Usage of CI]
Step 9 − You will get the ID of the project which will host the Kubernetes cluster −
[image: GitLab Usage of CI]
Step 10 − Enter the values in the fields for your Kubernetes cluster along with the Google Cloud Platform project ID and click on the Create Kubernetes cluster button −
[image: GitLab Usage of CI]

GitLab CI - Cycle Analytics

Description
Cycle Analytics specifies how much time taken by the team to complete the each stage in their workflow and allows GitLab to store data of development efforts in one central data store.
The cycle analytics page can be found under the Overview section.
Step 1 − Login to your GitLab account and go to your project −
[image: GitLab Usage of CI]
Step 2 − Click on the Cycle Analytics option under Overview tab which will open the screen as shown below −
[image: GitLab Cycle Analytics]
The cycle analytics contains following stages −
· Issue − It specifies how much time taken to solve an issue.
· Plan − It specifies the time between pushing first commit to branch and action took for previous stage.
· Code − It specifies the time between pushing first commit to branch and created merge request for that commit.
· Test − It specifies how much time need to GitLab CI/CD to test the code.
· Review − It specifies time taken to review the merge request.
· Staging − It defines the time spent between merging and deploying to production.
· Production − It specifies the time taken to complete the entire process, from creating an issue to deploying code to production.
Kickstart
GitLab CI - Container Registry

Description
Container registry is a storage and content delivery system, which stores their Docker (it is database of predefined images used to run applications.) images.
Deploying the Registry
You can deploy the registry by using the below commands −
Step 1 − First, login to your GitLab server using SSH (Secure Shell).
Step 2 − Now start the registry container by using below command −
$ docker run -d -p 5000:5000 --restart = always --name registry registry:2
[image: GitLab Container Registry]
The -p 5000:5000 specifies first part as host port and second part as port within the container. The --restart = always flag restarts the registry automatically when Docker restarts. The registry:2 is defined as an image.
Step 3 − Now, pull the image from Docker hub to your registry −
$ docker pull ubuntu:16.04
[image: GitLab Container Registry]
The above command pulls the ubuntu:16.04 image from Docker Hub.
Step 4 − Next, tag the image to point your registry −
$ docker tag ubuntu:16.04 localhost:5000/my-ubuntu
Here, we are tagging the localhost:5000/my-ubuntu image for an existing ubuntu:16.04 image.
Step 5 − Push the image to local registry which is executing at localhost:5000.
$ docker push localhost:5000/my-ubuntu
[image: GitLab Container Registry]
Step 6 − Now remove the cached (ubuntu:16.04 and localhost:5000/my-ubuntu) images from the registry −
$ docker image remove ubuntu:16.04
$ docker image remove localhost:5000/my-ubuntu
[image: GitLab Container Registry]
Step 7 − Pull back the localhost:5000/my-ubuntu image from local registry −
$ docker pull localhost:5000/my-ubuntu
[image: GitLab Container Registry]
Step 8 − Now stop the registry and remove the data −
$ docker container stop registry && docker container rm -v registry
[image: GitLab Container Registry]

GitLab Issue Tracker
GitLab - Create Issue

In this chapter, we will discuss about how to create an issue in a project −
Step 1 − Login to your GitLab account and go to your project under Projects section −
[image: GitLab Remove User]
Step 2 − Go to Issues tab and click on the New issue button to create a new issue as shown below −
[image: GitLab Create Issue]
Step 3 − Now, fill the information such as title, description and if you want, you can select a user to assign an issue, milestone(refer this chapter for more information), labels upon operation or could be choose by developers themselves later.
[image: GitLab Create Issue]
Step 4 − Click on the Submit issue button and you will get an overview of an issue along with title and description as shown below −
[image: GitLab Create Issue]
GitLab - Merge Requests

Description
Merge request can be used to interchange the code between other people that you have made to a project and discuss the changes with them easily.
Steps for Merging Request
Step 1 − Before creating new merging request, there should be a created branch in the GitLab. You can refer this chapter for creating the branch −
Step 2 − Login to your GitLab account and go to your project under Projects section −
[image: GitLab Remove User]
Step 3 − Click on the Merge Requests tab and then click on the New merge request button −
[image: GitLab Merge Request]
Step 4 − To merge the request, select the source branch and target branch from the dropdown and then click on the Compare branches and continue button as shown below −
[image: GitLab Merge Request]
Step 5 − You will see the title, description and other fields such as assigning user, setting milestone, labels, source branch name and target branch name and click on the Submit merge request button −
[image: GitLab Merge Request]
Step 6 − After submitting the merge request, you will get a new merge request screen as shown below −
[image: GitLab Merge Request] GitLab - Referencing Issues

GitLab can be able to refer the specific issue from the commit message to solve a specific problem. In this chapter, we will discuss about how to reference a issue in the GitLab −
Step 1 − To reference a issue, you need to have an issue number of a created issue. To create an issue, refer the creating issue chapter.
Step 2 − To see the created issue, click on the List option under Issues tab −
[image: GitLab Reference Issue]
Step 3 − Before making the changes in your local repository, check whether it is up to date or not by using the below command −
git checkout master && git pull
[image: GitLab Reference Issue]
The git pull command downloads the latest changes from the remote server and integrates directly into current working files.
Step 4 − Now, create a new branch with the name issue-fix by using the git checkout command −
git checkout -b issue-fix
[image: GitLab Reference Issue]
Step 5 − Now, add some content to the README.md file to fix the bug −
echo "fix this bug" >> README.md
Step 6 − Enter the commit message for the above change with the below command −
git commit -a
This command opens the below screen and press Insert key on the keyboard to add a commit message for the issue-fix branch.
[image: GitLab Reference Issue]
Now press the Esc key, then colon(:) and type wq to save and exit from the screen.
Step 7 − Now push the branch to remote repository by using the below command −
git push origin issue-fix
[image: GitLab Reference Issue]
Step 8 − Login to your GitLab account and create a new merge request. You can refer the merge request chapter for the creation of merge request.
Step 9 − Once you create the merge request, you will be redirected to the merge request page. When you click on the Close merge request button (refer the screenshot in the step (6) of merge request chapter), you will see the Closed option after closing merge request.
[image: GitLab Reference Issue] GitLab - Milestones

Description
Milestones are used for arranging issues and merge requests into a determined group which can achieved within a specified amount of time by setting a start and due date.
Steps for Creating Milestones
Step 1 − Login to your GitLab account, go to your project and click on the Milestones option under Issues tab −
[image: GitLab Milestone]
Step 2 − Click on the New milestone button −
[image: GitLab Milestone]
Step 3 − Now enter the title, description, start and due date and click on Create milestone button as shown in the below image −
[image: GitLab Milestone]
Step 4 − After creating a milestone, it will display a message saying 'Assign some issues to this milestone' as shown below −
[image: GitLab Milestone]
Step 5 − Now go to Issues tab and click on the New issue button to create an issue for the milestone −
[image: GitLab Milestone]
Step 6 − Now, fill the information such as title, description and if you want, you can select a user to assign an issue, milestone, labels upon operation or could be choose by developers themselves later. Click on the Submit issue button.
[image: GitLab Milestone]
Step 7 − After creating a issue, you will get overview of an issue along with title and description. At right side, click on Edit option and assign milestone for the issue under Milestone section −
[image: GitLab Milestone]
Step 8 − Now go back to Milestones section and you will see the added milestone along with created issue −
[image: GitLab Milestone] GitLab - Wiki Pages

Description
Wiki is a system for maintaining documentation for a project in the GitLab. It is like a Wikipedia which can be editable and given permissions to manage the wiki pages. A Guest can view a wiki page and Developer can create and edit a wiki page.
Steps for Creating Wiki Page
Step 1 − Login to your GitLab account, go to your project and click on the Wiki tab −
[image: GitLab Wiki Page]
Step 2 − Now enter the title, format, fill the content section, add a commit message and then click on the Create page button −
[image: GitLab Wiki Page]
Step 3 − You will get newly created wiki page as shown in the below image −
[image: GitLab Wiki Page]
2 | Page

image2.png
GitLab

image83.jpeg

image84.jpeg

image85.jpeg
‘Schedule 3 new pipeline

image86.jpeg

image87.jpeg
D= £ 72K8) Commits @) Eranches (3 Tage)
) Merge Recuests
s rnanngioq | | AddLicense | | Add Contribation guide | | Ensble Auto DevOps
@ a/o Ppelnes
= Jobs frsgitabpit)+

sehedules
& srippets

wile
Enitonments sy nagathan authored 3 week g2,

& setings [kubemetes |

e st commit
@ NewDemorie Addnew e

B resomemd Add READMEMS

image88.jpeg
@ Ovenview
® repostory
0 registy
O e

N erge Requests

oaw® Integrate Kubernetes cluster automation

bt dusteslowyouto e e s dee o
“ppcans s s v et nan 35
ek mere sbod Kuber

Ppeines
s
schecils
emiconmerts

Kubermetes &

image89.jpeg
o

i you i oot Sy
Sotctirs. s posincs s e

0 ressiy

O sues

[rREr—

image90.jpeg
Ener the detas fo your Kubernets chster

ettt o e

image91.jpeg
gt o o oo
flerrterion

image92.jpeg
toud Platfor

Cloud Launcher

Bilng

APt servces

support

1048 admin

select

e

3 praea

image3.png
4

Lab.com

Username or primary email

Password

©

Forgot your password?

() Remember me

By signing in you accept the Terms of Use and acknowledge the
Privacy Statement and Cookie Policy.

Don't have an account yet? Register now

or sign in with

G Google
© GitHub
o Bitbucket

Salesforce

() Remember me

image93.jpeg
New Project

@ You have 11 projects remaining in your quota. Learn more.

Project name

kubernetes-cluster

Your project ID will be kuberetes-cluster-196706) Edit

Cancel

image94.jpeg
Cloud Leuncher
Biling

APIs & Senvces
Support

1AM & admin

DASHBOARD

Project info

Proectrame

AcTwiry

w1 APIs

Requests (request/sec)

image95.jpeg
ool

5 m.,mmm SR -

oo ond Pt 0 s

image96.jpeg
o s

2 msriins
e

2 e

& e
oo RER—

Py
i ——

e

& e
Lo st s s v

image97.jpeg
t osivtayss ¢ (ocuer N TN TR SHRASSERE T westart
regisi
cfe:

nane registry

image98.jpeg
b Da: Pulling from librarvoubuntu o0t
Pulling fron Librara/uun
548

igest
gost? shazst:edd8fbbeabebiade73aha3vade 15t e 780!

image99.jpeg
The push refers to a repository [localhos
dnS84c622h50: Pushed
S3a7cashbs3d

660,my-huntul

Pushed
Pushed

i gest: sh
S28065F cive: 1357

image100.jpeg
locker image remove ubuntu:16.04
.04

1
E01ah: docker inage remove localhost:5808/my-ubuntu
ocalhost: 5880y ubuncuz Taceot

image101.jpeg
uds@buds_gitlab:
ising default tag

Pulling fron yubunty
sha2

ateer D oo ok ISERO/RubR Y

image102.jpeg
uds@huds_gitlab:™$ docker container stop registry && docker container rm —v re
istr

egisiry
egistry

image103.jpeg
® Repository

Q gy

0 e o

The Issue Tracker is the place to add things that
o necd to be improved or solved in a project

B —
0w prevtyony ey

i [e]

8 settoas

image104.jpeg

image105.jpeg
0 e

Issue Demo
B e

image106.jpeg
o we

x sropes

o secoos

Merge requests are aplace to ropose changes
Jou v made to 3 project and scuss those changes
i ctners

image107.jpeg
New Merge Request

image108.jpeg

image109.jpeg
Fixa bug

[

o

image4.jpeg

image110.jpeg
Open 1 Closed 0

Repository

Registry

Issue Demo
Issues pened 9 minutes ago by mahantesh v nagathan

List

image111.jpeg
\firstogitlah-projectygit checkout naster & git pull
witched to branch ’mas

our branch is up—to—i o ith sorigin/master

image112.jpeg
\first-gitlab-project>git checknut ~b issue—fix
witched to a new branch ’issue—fi:

image113.jpeg

image114.jpeg
Iafieetgiclabproject Jait puch origin dssue~fix
5

olta conpross fon ubing b to 4 chroads.
onpressing objects: 108% (2/2). done.
eing obdects: 160x (3/3>. 294 hytes 1 8 hytes/s. done.
otal 3 (delta B>, reused 8 Cdelta 8>

ergo roquest for dssuo fix; visit:

sate o m
reno hetpo: /.
rw)euuest/5Bsnnrce/hx~anc)|/5D et

P A R R A M & H e S

image115.jpeg
Fix a bug

[T -

JOR L —,

image116.jpeg
O issues. o us

ommit () Branches () Tags (0) Readme | Add Changelog | | Add License
Auto Devops (Beta)
©
& Tl automaticaly bl test an deploy your 3

Learn more nthe Auto DevOps documertation

Enable i setings

23 settings

image117.jpeg

image5.jpeg
first-gitlab-prt &

image118.jpeg
o
o

image119.jpeg
@ Repository

Milestone Demo

Q gty
Wecame o Tt

0 e 0

™

-

s s @ MegeReqests @ Patants @ Labls @

Miestones R —

eserees @ Unisepm 0 orgogluespmand 0 Conplsdlines o 0
WL Preee) wsired

@ aso

image120.jpeg

image121.jpeg
New Issue.

image122.jpeg
b

Milestone Demo Issue

image123.jpeg

image124.jpeg

image125.jpeg
N e e
o aro

o

5 o

o sennss

Home - Create Page.

Bannaie

[—

image126.jpeg
& o

0 sy
Wiki demo page [[

0 st e e v

0w

[p—

o

image6.jpeg

image7.jpeg
84:11PM B
18411PM___Microsoft Office .

Clkey
Bkeypub R

image8.jpeg
Pow
8 reme
& outata

2 ssunen

@

S s s
e s

e T

image9.jpeg

image10.jpeg
@ Secure | hitpsy/gitlab.com/users/sign_in

GitLab.com

Gitab.com offer ree unimited (pivate) epositories and unlmited

Register
« Explore projects on GitLab.com (no login needed)
+ More information about GitLabco

« Gittab.com Support Forum

* Gitlab Homepage

Frgotyourpssvard?
By signing up for and by sgning into thissenvice you accept our:
« Privacy policy

image11.jpeg
@ Secure | https://gitiab.com

Your projects Jsearch your projects

Starred projects
Vour projects Frequently visited
Bploweieoiccts first-gitlab-project
Al personal oroductarou

first-gitlab-project

mahante

first-gitlab-prit

mygitlab-project

mahante

image12.jpeg
General
Members
Integrations

Repository

Pages

Audit Events

frstgitab-pit / + v

ADMEMA
‘esh nagathan authored 2 weeks ago

Last commit

Add READMEMA

image13.jpeg
Runners settings
it and s your roers for s prcjec

A Runnr s process hich s 3 ob. You cansetup sy e 3 you nee.

e e can b ncne o th g it

. Runmeris cive an ca process any e jobs
B Runneris ausecand vl ot receve any e jobs

o start serving your jobs you can either 2dd specific Runners to your project o us
Runners

Specific Runners Shared Runners

How
project e powerd by Dighaloeen, Atcscalng mesns reuced

prject
Y
Tup o ek com o
soenrylhe»oﬂwr\glmewmlh-wunmmw e to 2000 C miutes per manih prgrup o prvate
et gio cont s ead oot o Gl

ey e

image14.jpeg
:\>cd GitLab-Runner

\Gitlab-Rumer>git lab-rumer exe register

[Picace ence: €lah-ci coordinator URL Co.g. https://gitlab.con/>:

hetpo /g $t1ah,

iohce anten the gitlah-ci token for this runner:

.:xlm,um;zxnpwry g
gitlanct desoription for this rumers

fiainsn- PCI Nelln Gnlmb B

Teaze ent i 25 for this runner Ccomma separated):

Mhether to lock the Rumer o current project (erue falsels

Erus,

fresiscoring runner.

e onten the. bxetutors parallels, shell.
fshinachine.

<[B3n runnere83n-UxiHsUsN
docker+machine, kubernetes. docker-]
5ok, soh. virtualbox:

P}ease gncer the default Docker inage
unner rogistersd successfully. Feel free to start it, but if it’s running alres
1y the conig should he automatically neloadedte(0;m

Ce.g. ruby:

s

:\GitLab-Runner>

image15.jpeg
Specific Runners

Shared Runners

e

image16.jpeg

image17.jpeg
. 8
(Yo
@ nec

image18.jpeg
E
first-gitlab-prt +

5 o oot &4+

he eposkon o i projct s mpty

image19.jpeg
. prane
//nmane@g"lah Son® .
wning: You appear to have cloned an empty repository.
hecking connectivity.

I

image20.jpeg
S\first-gitlab-prjt>touch README.nd
s\first-gitlab-prjtdgit add README.nd

\First—gitlab-prjtdgit commi ‘add README"
(nagter Croot-connit> 66358551 aad_READM
ile chang extionsCe>. @ doletions<->

ed. @ ins
Croate ode 00644 READHE m

T\First-gitlabopritogit push -u, origin mastor
sernane for " https://gitlab.con’ : po.
asouord for ' https://pnanclyitlab. Zon”

ounting ehjoots 3. don
heiting 186 <373, 217 bytes 1 B bytes/s, done.
otal 3 Coten 03 reused B Cdoica

o https://gitlablcon/pnane/first-git lab-prjt.git

ranch master set up to track remote branch master from origin.

S\First-gitlab-pritd.

image21.jpeg
© awniw

F

frst-gitlab-prt +

image22.jpeg
e
O

Fokprject

image23.jpeg
Forking in progress.

% s

image24.jpeg
[r—

 ounier

3

first-gitlab-pet

s FERpPRT—

image25.jpeg
GitLab Groups Actity Mikstones Sippets

Projects
o5 Vour projects rch your projects.
Starred projects Frequently visited

Your projects

Explore projects

F firstaitisb-project
Al personal product

image26.jpeg

image27.jpeg

image28.jpeg
e —

© bty

image29.jpeg
:\first—gitlab—prjt>touch myproject_demo.html

\first—gitlab—prjt>

image30.jpeg
Date modified Type

I/2018514PM_ File folder

L] myproject_ demo.htmi 7/2018516 PM___ Chrome HTML Do.

[READMEmd JII8514PM D File

image31.jpeg
o first-gitlab-prit

ot G o ek 1 e s

ottt 6

PR,

X s

image32.jpeg
Newfile Template Choose type

¥ master / [Newdemorile
1 [helcome to Tutorialspoint.

Commit message Add new file

Target Branch master

image33.jpeg
g rewi amen B

[e—

image34.jpeg
st-gitlab-prjedgit checkout b rebase-exanple
E b Pranch Srebase-exampie”

SRR Rt
Jo: e ivse-gitlabprieo_

image35.jpeg
first-gitlah-prjtdecho “Welcome to Tutorialspoint" >> rebase file.nd

irst-gitlab-priton

image36.jpeg
INfirst-gitlab—prjt) git add .

:\first-gitlab-prjtdgit commit —m_ “Rebase file added"
[rebase-exanple £4c63d@] Rebase file added

create mode 108644 rebase_file.nd

image37.jpeg
:\first-gitlab-prjtigit checkout master

witched to hranch ’master’
our branch and ’origin/master’ have diverged,
nd have 1 and 3 different commits each, respectively.

Cuse “git pull" to merge the remote branch into yours)

:\first-gitlab-prjt>

image38.jpeg
First-gitlab-prjtdecho “text in main branch" >> README.nd
S\First-gitlab-prjtdgit add .
S\first-gitlab-prjt>git conmit —n “Conmit in master"

[master 7dd6a44] Commit in master
1 file changed, 1 insertionC+>

Fivst-gitlab-pritd

image39.jpeg
:\first-gitlab—prjt>git checkout rebase-branch
witched to branch ’rebase-branch’

\first-gitlab-prjt>

image40.jpeg
\first-gitlab-prjt>git rebase master
irst. rewinding head to replay your work on top of it...
pplying: Another commit

\first-gitlab-prjt>

image41.jpeg
first-gitlabpritdgit checkout —b squash-chapter
witched to a new branch ’squash-chapter’

image42.jpeg
\first-gitlab-prjtdecho "messagel" >> README.nd
:\first-gitlab-prjtdgit add -

INFirgt- gitlah-g?g it commit -a -n “messagel commite
[squash—chapter bbYal messagel commited
1 file changed. i insertion<+>

Nfirst-gitlab-prjt>

image43.jpeg
:\first-gitlab-prjtdecho “"message2" >> README.nd
i\first-gitlab-prjtdgit add .

:\first-gitlab-prjtdgit commit -a —n "nessage2 conmited"
[squash—chapter 6h67084] message2 commited

1%File changed. 1 insertion<ed

\first-gitlab-prjtd.

image44.jpeg
Foicic 7o1mas
et b 0 o toaeE ommitea

In Rebase e617ccS..6167004 onto e6h7ccS
I

it Conmands :
I b, pick = use comnit
¥ reord = use commit, but edit the commit message
e edit = use commit, hut stop for anending
use commit. but meld inte previous commit
£ 1ike Poquashv, hut discard this commit’s log message
x sun conmand Cthe west of the line> using shell

These lines can be re-ordered; they are executed from top to botton.
1£ you renove a Line here THAT COMNIT WILL BE LOST.
Houever, if you remove everything, the rebase will he ahorted.

Note that empty commits are commented out

62201827 a1l

image45.jpeg
S\first-gitlab-prjtgit push origin squash-chapter
jsernane fox ' https://gitlab.con’? pnane

onpressing objects: 108% (6/6). done.
iriting ohjects: 180 <663, 631 bytes i @ hytes/s, done.
otal b (delta 2), reused 8 Cdelta B

To create a nerge request for squashchaptor, visit:
££ps3//git 1ab.con/pnane /f irst-git lab-prjt /merge_requests/neu?nerge_rel
oS S Bsource. hranchzaD squash chapter

emote:

o https:
% Tnew hranch] ‘Squash-chapter —> squash

/gitlab.con/pnane £ irst-gitlab-prjt.git
chapter

:\first-gitlab-prit)

image46.jpeg
% snipps

o fistgitabpit /| + v
£ settings General

Members wile
mane authored day ago

Integrations
Repository Last commit
aso

Pages

image47.jpeg

image48.jpeg

image49.jpeg
& Oveniew
0 Registy
Project members
= ' Youcnadda rew member o irstgitlab-pritor sare vithanctner group.
MegeRequests ©
= Add member
o aro
Select members to nvite
0 v for members to updste or
& et Choosea ol permission
o3 setings Gusst
o Resd more sbost e permisiors
Accessexpration date
Members =
Expration cate
Integrations
Reposiory proect | | import
aro
isting members and grou
o no: oroups
Audt Events Memosrs o irst-gitat-prit €@

mabantesh v nagathan Gmerto1so: (R
Joined s mctes 300

pravin mane Gomare
Joined ess tan 3 minute ago

image50.jpeg

image51.jpeg
@ Oveniew

Q Ry

0 s

0 Merge Recuess
)

@ we

& snopes

B setings

Import members from another project
Only proect memberswi be mported. Group mermbers il besoped.

Pt pravinmane /frstgitabprt

image52.jpeg
11 Merge Requests

®ao

@ w

& Snippets

2 settings
General
Members
Integrations
Repostory
a/@
Pages

Audt Events

Project members
Vo can 00 3 new ember o first-gitiab-pit o s tth anoiner o,

Add member

Select members toinite

o upaateor

Choose ole permisson
Guest

Read more aboxt role permisions

Access expiation dste

Expiation cate
Adgtoproect | | import
Existing members and groups

Members o fst gt it @)

mahantesh nagathan @mentu1soi
Jeined 13 mintes 350

pravin mane @pmane

& Joned 13 minites ag0

image53.jpeg
Gitiab G | Ay Misores

b

Yourprojects Stared projects Bipore projct

image54.jpeg

image55.jpeg

image56.jpeg
product-group &

image57.jpeg
Projects v Actvty Miestones

Groups

Your groups Explore public groups

Snippets

m o Productgoup Ouer
my first production group

m ¢ ForkGowp Omer
It will be used for forking the project.

image58.jpeg
& Snippets

vt firs-gitlab-prjt
£ settings General
Members wile
mane authored a day ago

egrations
Repository Last commit
aso

Pages

image59.jpeg

image60.jpeg
Rl Giti2b com seys:

Ay e vt o remve v e o the e
sty ——

Project members

Vou can add new e

Select members to invite

Share with group

image61.jpeg
@ Ovenvien
O registy

O issues

1 Merge Requests
@aswm

O wis

Project members

Select members o invite

image62.jpeg
Share vith group

Select members to inite

ach for members o update or

image63.jpeg
iy dtatam s Dirteu RAKS JLEARIBACUREGRORES
= abacs
u.pmq PostgreSal, database gitlabhg production ... (J0N]

ISKIPPED]

* r00t/ny-avesone-project ... (SKIPPED]

ing container registry inages
(o1sapLED]
ating backup archive: 1521884283 2018_03_24.16.5.3_gitlab hackup.tar

aone]

ploading backup archive to remote storage skipped

elecing tnp directories

kipping

image64.jpeg
lab-rake gitlab:backup:create SKIP=db.uploads

PRt ... [SKIPPED]
~ ISKiPPED]

* 00t /ny-auesome-project ... [SKIPPED]

unping wploads

sxippED)
unping

builds ...

unping artifaces ...
unping pages ...

unping 162 ehjects

unping container registry images

oisanLen)
ng backup archive: 1521884424 2018 63 24 10.5.3_gitlab_backup.tar

done]

ploading backup archive to renote storage skipped

Teting tap direccorics ..

Jeleting old backups ... skipping

image65.jpeg
it git 71688 Mar 3 9352 1520876751 2018_03_03_10.5.2_gitlah_hack
git git 10240 Mar 3 11:18 1520075924 2018 03 03 10.5.2_gitlah hack
it git 71688 Mar 5 07:08 1520233715 2018_03_05_10.5.2_gitlah_hack
git git 16248 Mar 5 67:08 1520233735 2018_03_05_10.5.2_gitlah_hack
it git 71680 Mar § 11:43 1520258227 2018 83 05_10.5.2_gitlab hack
it git 71688 Mar 5 12318 1520252336 2018_03_05_10.5.2_gitlah_hack
it git 61440 Mar 9 0S:01 1520571670 2018 03 09 10.5.2_gitlab hack
git git 71688 Mar 23 8350 1521795049 2018_03_23_10.5.3_gitlah_hack
git git 16248 Mar 23 B8:51 1521795106 2018 03 23 10.5.3_gitlab_hack
git git 71688 Mar 23 11:23 1521804182 2018 03 23_10.5.3_gitlab hack
it git 71688 Mar 24 G439 1521567554 2015 03 24 10,5 5 witlah hack
it git 10240 Mar 24 BS:01 1521867650 2008 03 24 10,5 5 aitlah hack
it git 10248 Mar 24 5302 1521567756 2015 03 24 10,55 witlah hack
it git 71680 Mar 24 86339 1521573554 2008 03 24 10,5 5 citlah hack
it git 10248 Mar 24 06340 1521673612 2015 03 24 10,55 sitlah huck
it git 71688 Mar 24 89338 1521554265 2015 03 24 10,5 5 witlah hack
GIE I 10740 aw 24 0940 T2 T TOTs T T T T S T e

image66.jpeg
g, T ol stop unicorn
0z 713s, norna v
8 suda” gitlab-cil stop sidekiq
90@8s, normally u;

image1.png
GitLab

image67.jpeg
[DONE1

0 =s [DONEI
avesone-project ... [DONF1

Pl CIELah hooke In repositories dirs (DONE]

Restoring arcifacts ...
done

cstoring page

don
festoring 1fs ohje
d

[his uill robuild an authorized koye file.
tou will 105 any dack'scored in authorizéd kese file.
you yes

done

Deleting tnp directories
fone

done
done
done
done

image68.jpeg
oot@hurls_qltlab “# sudo gitlab—ctl restart
run: gitaly: Cpid 23988 1s

run: gitlab-monitor: (pid 23912) Bs
run: gitlab-workhorse: (pid 23924) 1s
run: logrotate: (pid 23935) Bs

run: nginx: (pid 23941> is

run: node—exporter: (pid 23947) Bs
run: postgres—exporter: (pid 24026)> Bs
run: postgresql: Cpid 24834 1s

run: prometheus: (pid 24842> @s

run: redis: (pid 24@51> is

run: redis—exporter: (pid 240855 @s
run: si i id 24068> @s

rrrrrrrrrrrrr

image69.jpeg
rootBhuds_gitlah:"# sudo gitlab-rake gitlab:check SANITIZE:
hecking GitLah Shell ...

itLab Shell version >= 6.8.3 2 ... 0K 6.0.3)

nwned by gitiroot, or gi

- ve
access is drewxeus—?

hooks directories in repos are links: ...
repository is empty

12 - repository is empty

%

A

... reposito: s
junn ing /npt/g:tlab/emhedded/seru;ce/g;tlab—shell/hxn/check
heck Git

Redis Sonfieble uvia Snternal API: OK

Access to /var/opt/gitlab/.ssh/authorized keys: OK
itlah-shell self-check success

hecking GitLab Shell ... Finished
hecking Sideliq ...

unning?
umber of ‘§idekiq processes ... |

hecking Sidekiq ... Finiched

oply by omadl s disabled in conf ig/gitlab.yml
Checking LDAP

LDAP is disabled in config/gitlab.ynl
Checking LDAP ... Finiched
Checking Gitlah ...

Git configured correctly?

.e. yes
Jes

ves
<. skipped (no tmp uploads

Init soript cxiste? .. shivged Comiber gitleb ks no init seripe)
[nit script up-to-date? ed Comnibus—gitlab has no init script)
Projects have nanespace

i ve:

ves
yes (2.3.6)
2.14.3>

Checking GitLab ... Finished

image70.jpeg

image71.jpeg
A ATLASSIAN

o Bitbucket

‘ 8+ Log in with Google

or

‘ Email

‘ Password

Lo Forgot your password?

Need an account? Sign up.

image72.jpeg
Confirm access to your account

Gitlab s requesting access to the following:

Read your account information

Read your repositories' issues
Read your team's project settings and read repositories contained within your
team's projects

Read your repositories and their pull requests

Read and modify your repositories’ wikis

image73.jpeg
@ import prjects from Bitbucket

image74.jpeg
9 mpor projects rom stucker.

image75.jpeg
© a/co Setup a specific Runner manually
o wik 1 Install 2 Runner compatible with GitLab CI (chackout
the GiLab Runner section forinformation on howt0

install it).

2. Specity the following URL during the Runner setup:
Witps://g1t1ab.con/

3, Use the following registration token during setup:
et

4 Strt the Runner

% snippets
¥ Settings
General

Members

Integrations Runners activated for this project

Sy A7e75d019@

Y Hello GitLab Runner
Pages

Audit Events

image76.jpeg
© a/co Setup a specific Runner manually
o wik 1 Install 2 Runner compatible with GitLab CI (chackout
the GiLab Runner section forinformation on howt0

install it).

2. Specity the following URL during the Runner setup:
Witps://g1t1ab.con/

3, Use the following registration token during setup:
et

4 Strt the Runner

% snippets
¥ Settings
General

Members

Integrations Runners activated for this project

R A 7§7£d019

Y Hello GitLab Runner #331172

Pages

Audit Events

image77.jpeg
@ oveniew
© Reposiry

O regsty

O e

1 ergeReguests
oo
0w

& snippets

B setings

Runner #331172

Active @ Paused Romnrsdontaccept v o
Prteces 3 Thisroer il ol un n ipsines igered on preected banches

un ntaggad jobs 4 incctes whethr i e can kb wihout 5gs

[z]
projects

Token TGmSIbasROEI9TR

Pades | sz

Ossaption el Gitab Rumer

Tags

image78.jpeg
o [——

© Repostory
Runner #331172
O regiry o
roperty Name.
active

erge Requests P

an un taggedil

Lockeato i prject

srppets i

setiogs Nome
verson
? s
Revion
Patorm
pr—
oescrtion

r—
1040

as7aes

15

HalloGitab Runner

image79.jpeg
@ owniew
B Reposicry

0 regity

O e

1 MergeReguests
Qa/m

O wi

& snipets

B settoge

Runner #331172

Active % Paused Rumnrs dont ccept b

un etaggadjobe Incictes whethr i rmar can pck o et e

Locktocurent Whenarnner s locked, 1 carnct bessigned o thr prjects
projects

Toen | dolsimas e
Padwes wauiLiz
Ousciption el Gitab Rnner

Tags

Vou can setup b o only s Furners with seciic g Separte tags it commas,

image80.jpeg
@ ovweniew
® reposiary

O regity

0 s

N Merge Reguests
oa/o

O i

& snipets

 setings

Runner #331172

ctive @ PausedRunners dont accept newjobs
Protected 3 Thisrumer il ol n o ipsines igered on protctedbranches

=

Locktocurent # when s rumneris locked, i cant be asignd 1 b prcecs
prjecs

Ton TS bMIzSCGC16197892

Pades | rasiz

Oescrption el it Rumer

Tags

image81.jpeg
Pipeline triggers
F— ipeline trigge

eratons

P
o

image82.jpeg
& o
0
LE—

0ca

it
ey LD e ot ko D9

funnersstings
[—

Secrtvarabies ©

Ppeine viggers

